17 research outputs found

    NANOPILLAR BASED ELECTROCHEMICAL BIOSENSOR FOR MONITORING MICROFLUIDIC BASED CELL CULTURE

    Get PDF
    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes - Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the `Enzyme electrode\u27 was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the `Working electrode\u27 was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose monitoring devices. Third, the methods used to develop 3D electrodes incorporated with nanopillars can be used for other applications such as neural probes, fuel cells, solar cells etc., and finally, the knowledge obtained from the immobilization of enzymes onto nanostructures sheds some new insight into nanomaterial/biomolecule interactions

    Role of SAM Chain Length in Enhancing the Sensitivity of Nanopillar Modified Electrodes for Glucose Detection

    Get PDF
    In this report, alkanethiol self assembled monolayers (SAM) with two different chain lengths were used to immobilize the functionalizing enzyme (glucose oxidase) onto gold nanopillar modified electrodes and the electrochemical processes of these functionalized electrodes in glucose detection were investigated. First, the formation of these SAMs on the nanopillar modified electrodes was characterized by the cyclic voltammetry and electrochemical impedance spectroscopy techniques, and then the detection sensitivity of these functionalized electrodes to glucose was evaluated by the amperometry technique. Results showed that the SAM of alkanethiols with a longer chain length resulted in a higher degree of surface coverage with less defect and a higher electron transfer resistance, whereas the SAM of alkanethiols with a shorter chain length gave rise to a higher detection sensitivity to glucose. This study sheds some new insight into how to enhance the sensing performance of nanopillar modified electrodes

    Tobacco chewing and female oral cavity cancer risk in Karunagappally cohort, India

    Get PDF
    This study examined oral cancer in a cohort of 78 140 women aged 30–84 years in Karunagappally, Kerala, India, on whom baseline information was collected on lifestyle, including tobacco chewing, and sociodemographic factors during the period 1990–1997. By the end of 2005, 92 oral cancer cases were identified by the Karunagappally Cancer Registry. Poisson regression analysis of grouped data, taking into account age and income, showed that oral cancer incidence was strongly related to daily frequency of tobacco chewing (P<0.001) and was increased 9.2-fold among women chewing tobacco 10 times or more a day. The risk increased with the duration of tobacco chewing during the first 20 years of tobacco chewing. Age at starting tobacco chewing was not significantly related to oral cancer risk. This is the first cohort study of oral cancer in relation to tobacco chewing among women

    Activating the knowledge-to-action cycle for geriatric care in India

    Get PDF
    Despite a rapidly aging population, geriatrics - the branch of medicine that focuses on healthcare of the elderly - is relatively new in India, with many practicing physicians having little knowledge of the clinical and functional implications of aging. Negative attitudes and limited awareness, knowledge or acceptance of geriatrics as a legitimate discipline contribute to inaccessible and poor quality care for India's old. The aim of this paper is to argue that knowledge translation is a potentially effective tool for engaging Indian healthcare providers in the delivery of high quality geriatric care. The paper describes India's context, including demographics, challenges and current policies, summarizes evidence on provider behaviour change, and integrates the two in order to propose an action plan for promoting improvements in geriatric care

    Not Available

    No full text
    Not AvailableA study was conducted to develop optimal irrigation schedules and crop water production function for cassava in the three major growing areas of India, viz., Salem (Tamil Nadu), Thiruvananthapuram (Kerala), and West Godavari (Andhra Pradesh). The irrigation schedules and water requirements weresimulated using CROPWAT, and the model result was verified with field values in Thiruvananthapuram, one of the study areas. The results indicated the wider applicability of CROPWAT in calculating water requirement as well as developing irrigation schedules for cassava irrespective of the agro-climatic conditions. The optimal gross irrigation requirement simulated by CROPWAT was 362, 610, and 703 mm in Thiruvananthapuram, West Godavari, and Salem, respectively, based on the soil, crop and climatic parameters.The optimal schedules were also developed in the study locations using CROPWAT, and it can be used for further irrigation practices and plans to maximize water productivity. Also, the field experimental data in Thiruvananthapuram showed a quadratic relation between crop water requirement and yield (R = 0.86).The derived crop water production function (CWPF), provided yield of 39 × 10 kg ha of cassava corresponding to the simulated gross irrigation requirement of 362 mm in Thiruvananthapuram. Thus the CWPF together with the optimal schedules is a useful tool for water managers and farmers to develop appropriate irrigation plans in advance to mitigate the water scarcity as the result of climate change 1✉ 1 The results indicated the wider applicability of CROPWAT in calculating water requirement as well as developing irrigation schedules for cassava irrespective of the agro-climatic conditions. The optimal gross irrigation requirement simulated by CROPWAT was 362, 610, and 703 mm in Thiruvananthapuram, West Godavari, and Salem, respectively, based on the soil, crop and climatic parameters. The optimal schedules were also developed in the study locations using CROPWAT, and it can be used for further irrigation practices and plans to maximize water productivity. Also, the field experimental data in Thiruvananthapuram showed a quadratic relation between crop water requirement and yield (R = 0.86). The derived crop water production function (CWPF), provided yield of 39 × 103 kg ha of cassava corresponding to the simulated gross irrigation requirement of 362 mm in Thiruvananthapuram. Thus the CWPF together with the optimal schedules is a useful tool for water managers and farmers to develop appropriate irrigation plans in advance to mitigate the water scarcityas aresult of climate change.Not Availabl

    Hybrid control system for spacecraft antenna boom

    No full text
    Sensitive equipment utilized in aerospace applications experience vibrations from mechanical and thermal disturbances. Without proper vibration suppression systems, the delicate equipment can be severely damaged. A comparison between passive, active and hybrid control of light weight boom structure for space vehicles is carried out. Numerical and experimental analyses using NASTRAN finite element software are performed. Different control methods are applied, and a PID controller is implemented in the experiment. The main target of this research is to study the dynamic response of sensitive and light spacecraft structure like a boom antenna. In this experiment, the source of vibration disturbance is the force applied to one end of the structure and the response signal is captured by an accelerometer sensor at the free end of the beam. Piezoelectric Translator (PTS30 nanopositioning stage) (which is a linear actuator suitable for static and dynamic applications) is used for the reducing the vibration characteristics and thus damping out the vibrations. The maximum displacement provided by this actuator is +/- 15 mm and they provide pushing or pulling force of up to 30 N. The linear speed range of the PTS30 is 0 to 500 micrometer per second. The input to the actuator is provided by the accelerometer sensor through a power amplifier which is connected through a computer. The measured acceleration is integrated to obtain the corresponding velocities. Effectiveness of the control system highly depends on the position of the actuators. The average energy level taken over a frequency bandwidth of 4 Hz to 8 Hz will be considered as a parameter to be minimized. This research focuses on the reduction of vibration behavior of satellite boom structures over a wide frequency bandwidth using hybrid vibration control system. Here we present the results of damping effectiveness for different excitation amplitudes. Copyright © 2010 by ASME
    corecore